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Abstract

The purpose of this paper is to explore the use of several
model potential energy functions in order to try better to under-
- stand the nature of the forces which operate between simple monatomic
‘i cations and the molecules of solvent which surround them. This work
| builds upon and extends a recently reported initial treatment. In
that report, the potential energy was modelled as the sum of an
exponential (Born-type) repulsion and an ionic-dipolar attraction.

In this paper we consider composite functions which consist variously

of an exponential form of repulsion or an inverse R-12 repulsion,

and attractions which are expressed in terms of the basic ionic-
dipolar terms together with additional terms which depend upon the
polarizabilities of the ion and the solvent. No more than two
adjustable parameters are used. The force constants for the far
infrared-active vibrations of the caged ions are known. With the use
of the equilibrium condition for the cage of solvent, the values of
the parameters can be determined. Although all of the functions
examined show the effect of the polarizability of the ion on the force

6 and R 12

constants, a potential which consists of independent R’
terms together with other experimentally fixed ionic-dipolar terms
shows most clearly the effect of polarizability. We also find,
however, that the consideration of ionic polarizability alone is

inadequate to explain in a simple manner the variation of the force

constants for the alkali metal cations.




1. Introduction

It is generally assumed that for most cations in solution,
and even for those for which no effective covalentlv bhonded associa-

tions form, a discrete and persistent structurc of solvent molecules

accompany a centrally located ion. One can proposec significant,
discrete structurcs which may contribute to chemical reactivity or
transport processes which take place in solution. Thus, for a
variety of reasons there is a need to try to understand the nature
of the forces which bind solvent to ion in such an impermanent

cnvironment as that of a solution.

It 1s the purpose of this paper to present scveral forms of
potential energy function for the simple solvated alkali metal
cation. An ultimate objective of this kind of investigation
should bhe to specify an accurate form of the function. No claim is
even hinted that we are anvwhere near that goal. On the contrary,
here only short-ranged, intermediate--but necessaryv--objectives are
set, Specifically, we fit parameters in these model potential

functions with available spectroscopic data. At this stage it is

necessary to sec if it is possible to choose one form rather than another

as bheinpg more "accurate' with respect to physical interpretation.

As we amply illustrate in this naper, the stapge has not heen reached
where it is possible to assay the numerical accuracy of aay particular
form of potential cenergv function. For that assav, different

cxperiments with new sets of data are required,

L . 1 -
As we indicated in a recent paper, the solvated alkali metal
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catiaons are ideal subjects to study because of the relatively
uncomplicated nature of the electronic structure of the centrally
located ions. Thus, one suspects, the predominant forces of inter-
action are electrostatic with strong repulsions entering only
on very close approach hetween the ion and its solvent., The
process of modelling the appropriate potential energy function is
thereby simplified. FExperimental evidence in the form of the
far infrared-active vibrations of the alkali cations2 definitely
suggests that the ions occupy some form of cage of solvent and that
the cage endures for a sufficient length of time for the vibrations
to be obhserved.

In the previous paper,1 we modelled the interactions hetween
the centrally located ion in a cage of solvent and the molecules
of solvent which make up the cage as the simple sum of an ion-dipole
interaction and an exponential, Born-type repulsion. An equilibrium
condition for the single ion-solvent couple was used to fix values
for the adjustable parameters in the Rorn repulsion. Most importantly,
we showed that because the ion oscillates about a position of
equilibrium which also is the centre of symmetry, the force constant
does not depend directly upon any electrostatic ionic-dipolar terms.
The contribution of the electrostatic interaction between the ion and
a regular, crystalline cage of dipoles vanishes for the force
constant by reasons of symmetry. The form of the force constant
which we obtained indicated a direct dependence on the forces of
repulsion which operate.

We also showed in the previous paper1 that the force constants
for the vibrations of the alkali cations in their cages of solvent

range from a high value for lithium to a low value for potassium.
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However, from potassium to cacsium, the force constants again increase,
We indicated that this effect could be attributed to the increasing
polarizability of the electrons in the ions as the group is
transcended from lithium to caesium, Our arguments in that pre-
liminary report,l however, werec only qualitative. An aim of this
paper is to attempt to make the dependence of the force constant

on the polarizability of an ion explicit and quantitative. We

want to see if the trend in the force constants for the group of
the alkali metal cations follows the trend in the increase in the
observed polarizabilities.

We consider the following potential energy functions. First,
we re-examine the composite function which consists in part of the
Born exponential type of repulsion. Several years ago, WOodcock3
considered a generalized form of exponential-tvpe of repulsion
in connection with a study of the alkali halide solids. A Woodcock-
form of repulsion is used in the second example function. An advantage
of the Woodcock generalized repulsion is the fact that the "hardness"
of the repulsion can be adjusted easily. Finally, we consider
composite functions which are constructed of Lennard-Jones and Mic
(or decoupled Lennard-Jones) potentials. We will demonstrate
that the use of the lLennard-Jones potential in a Stockmayer-form
of potential leads to pathological conditions. In particular,
one is not free to choose values of the radii of solvation for the
ions at will. The use of the Mie potential, on the other hand,
shows a remarkable R™© repulsion for the interaction of the ion
with the solvent both for lithium and sodium,

Before we present the analyses of the various potential forms

in detail, it is nccessary to consider some procedural and mathematical
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preliminary opevations. These operations arce outlined in the next

section.

2. Method of approach

In this paper we consider the same syvstems as we considered
previously,1 viz., the solvated alkali metal cations. As indicated
above, here we consider more complicated, and one presumes, more
realistic, potential energy functions. These potential energy
functions are constructed as the sums of terms: repulsions and
attractions. In particular, we consider various ionic-dipolar
attractions, dipolar repulsions hetween molecules of solvent in
the first shell of solvation, dipolar-induced dipolar attractions
between solvent molecules and between the solvent and the ion, and
finally in some cases, induced dipole-dipolar interactions betwecen
the ion and the solvent. In all cases, the polarizability of the
solvent, as found with the use of the Loronz-Lorentz4 equation, 1is
used. In some of the cases, the polarizability of the ion is used;
the valucs arc those given in Smyvth's book.5 The parameters which are
adjustable and require fitting to ecx perimental data are contained
in the exponential repulsions or the lLennard-Jones (or Mie) components,
Throughout, we allow for only two adjustable parameters. These
two paramecters can be fitted to values of the force constants for
the far infrared-active vibrations of the ion. The expression f{or
the forcc constant and the condition for equilibrium vield two
expressions to usc to solve for the two parameters.

For the solvated ionic systems, therc are only limited un-
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ambiguous experimental data available which can be used to determine
the parameters in any model potential energy functions., Indeed,

as long as the question of the coordination number of the solvent
about any one of the alkali metal cations remains open, there arc

no data which are certain. We assume in this paper that the
coordination number of solvent for lithium, sodium, and potassium

1s four. The coordination number of solvent for rubidium and caesium
is most likely to be six. It is then possible to cstablish the
values for the force constants for the far infrared-active vibrations
of these ions.]

Data which are used in the following section to establish
values of the adjustable parametérs within each model potential
energy function are given in Table 1, The values of the radii
of solvation are those used previouslyl and are found with the
use of the Stearn-Eyring6 model as applied bv Abraham and Liszi.7

The polarizability of the solvent (taken to he dimethyl sulphoxide,

DMSO) is found with the use of the Loronz-Lorentz4 equation

Vo= 4ma/3 .1

in which n is the index of refraction, Vm is the molar volume, and

n is the polarizability.




7. {

a. Formulae for the force constant

As we showed in the previous paper,l when considering the far
infrarved-active vibrations of a solvated ion, it is essential to
develop expressions for the force constants in an appropriate form,
The vibrations arc known cxperimentally2 to involve the oscillatien
of the ion about a position of equilibrium at the centre of a
cage of solvent. We assume the cage is regular and crvstalline.

Thus, the position of equilibrium is also the centre of svmmetry.

It is necessary, therefore, to ohtain the force constant as the
second order coefficient in a Tavlor series expansion about the
centre of svmmetryv.

For the electrostatic interaction hetween the ion and its
solvent dipoles, the Carlson-Rushbrooke$ expansion can bhe used. for
cages of solvent which are distributed about the ion with cubic
svmmetry, these electrostatic terms do not contribute to the magnitude
of the torce constant. For other potential functions an integral form
of the Tavlor series has proved useful. This form was presented
to second order in the previous nanor.l Recently, we have generalized
the result to any order.?,10 The essential formulae are listed helow.

Frequently, onc encounters potential encrgy functions which
do not casily vield Fouricr transforms. The need for the Fouricer
transform of a function is essential in evaluating the integral
form of the force constant--see helow. When the Fourier transform
cannot be found, vet the function is otherwise well-behaved,
it is necessarv to revert to a differential form. Therefore, we

also present below a differential form which is useful in evaluating !
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the force constant associated with the Wookcock genceralized exponen-
tial form,

The force constant for the vibration of an ion about its
cquilibrium position at the centre of a cage of solvent is obtaincad
as follows. The formula for the second order contribution to the

. . .. 1,9
layvlor series 1s

1 \ 1 L 02 ~on .
F(r-V)?GR) = 3 r2/ATW g(-l) * Ay Py (TeR) T, (R) (2.2)
where
T, (R) = —L_J kKUK 3, (KR) (2.5)
- - 3
(2w)°/ 4

and jn(x) is the spherical Bessel function of the first kind.l!

In eqn (2.2) Pn(x) is the Legendre pol,\'nomia].l1 The argument reR
of the Legendre polvnomial is the scalar product of the

unit vectors ; and ﬁ. The vector B is directed from the molecule
of solvent to the centre of svmmetry and the vector I expresses

an excursion away {rom that point. The function (k) is defined

¢
hyl’)

F(K) = (4n)3/2[ dr T2G(r)jo(kr) (2.4

(4]

when G(r) is a scalar function. The coefficient A*o has two valuces

1/3 and 2/3 according as ¢ = 0 or 2,
For a system of solvation which is regular and crystaliine
in either a tetrahedral or octahedral sense, it is casily shown

that the the ¢ = 2 terms vanish when summed over the sources.
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Thus, the contribution to the force constant from an individual

term in the potential, G(r), is

o
1]

- ¢v/87 1,4 (Re)

- ——§77 f dk K*f(k)jo(kRo) (2.5)

An 0

where ¢ is the coordination number for the cage of solvent.

If the function G(r) is the exponential Born repulsion

boxp = B exp[-(R-Ro)/p] (2.6)

then this term will contribute
Kexp = —, (1 =~ 20n/Ro) (2.7)

to the total force constant.1 On the other hand, for a term in
the potential of the form R_m, a contribution of the form
- m(m-1)

) (2.8)
m 3R0m+2

“x

is found.9

FEquation (2.4) defines the radial component of the Fourier
transform of a function G(r). As indicated, frequently one encounters
well-behaved functions which nevertheless fail to yield easily
analytical expressions for f(k). In some instances, although it

is possible to find an analytical form for f(k), it i1s not possible
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casily to find the integral (2.3). On the other hand, sych functions
may yield readily to differential operators. One function which
satisfies this classification is the Woodcock gencralized exponential

. 3a
repulsion
oy (R} = BR "exp[- (R"-R5)/o"]. (2.9)

We now develop the differential form for the force constant term
(2.5). The completc expression for the second order term in the

. R 1,9
Tavlor series is given as

2 ) A A
ta(r,R) = /AT % |- %IZO(R) + 2P, (TeR) T, (R) (2.10)

for a function
G(r) = /AT Yoo (X)F(r)
{2.11)
in which Yoo(;) 1s the zeroth-order spherical harmonic function.
The problem is to convert T,4,(R) and 1,,(R) to differential forms.
First, for I,,(R) we write from the definition of the integral,

eqn (2.3)

L20(R) 1 fmdk K* (K)o (kR)

(2m)?* 7y

11 3¢

R f dk k2f(k)jo (kR) (2.12)

(2'")3 R aRz 0
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Into the integral on the second line of eqn (2,17) we substitute

the definition of f(k). Changing the order of integration gives

f dk k2f(k)jo (kR) (4n)3/zj dk kzjo[kR)J dr T2F(r)jo (kr)

0 0 0

5/2 (=
. 4 3/2,, }
—E377 J dr r F(r)§(r-R)

0

ar>/ 2R () (2.13)

where §{r) is the Dirac delta function., Substitution of this result

into the equation for I,,(R) gives

3F 3%F
Too(R) = - ——{2 30+ R 2 |, (2.14)
/AT R 3R2

For the evaluation of the second term I,,(R), we use the

lowering operator for the spherical Bessel function twice:11

i () = [n/x - d/dx]j_(x). (2.15)

Thus, by means of an operation similar to the above to get (2.14), we

find

I 1 32 3
22(R) = - F(R). (2.16)
Ydn | aR? R3R

The collected result is

_ 1 o)1 [,3F ’F 24 (o ov|3%F 1 3F
tz(R) = '2— T [-S—R[Zﬁ + R-;-)—R—;] + gpz(r R) [E)?—z- ﬁ s—R'] . (2-]7)




-12-

The form of (2.17) is the same as (2.10) as far as any angular

dependencies are concerned., Therefore, for collections of sources

which are distributed with cubic symmetry, the P,(r+R) terms vanish

when summed over all the sources. The application of the result

to the Woodcock generalized exponential potential, eqn (2.9},

yields
: c

2n 5

m(m-1j - n(n-Zm+1)(R0/p)n + n?(Re/0) . (2.18)

kW(m,n) ﬁhif
0
The contribution to the force constant for a Born cxponential

repulsion, cqn (2.7), follows immediately from (2.18) when m = 0

and n = 1.

b. Electrostatic interactions

The interactions between the ion and the solvent dipoles and
betwecen the dipoles of the solvent themselves will have a constant
representation in cach of the potential cnergy functions. The
inclusion or omission of induced dipolar interactions for the ion
varies with the type of repulsion considered; the Lennard-Jones or
Mic potentials, for cxample, implicitly include the induced dipolar

intcraction. tHere, we consider a general form to be used through-

out the disucssion in the next section.
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From Battchcr4 we can write the potential energy for the

interaction hetween two 7dentical dipoles of solvent as

5 =L i
d(l /\1 S3 /\1/\1. S5
2
o gy ues
_ _5 -1_ ~ A + 3 (~ ~) (2.19)
<3 M i AAy s

in which

A =1 - n°‘1—2‘2—(3/3)3 (2.20)

S

and u is the magnitude of the dipole moment. The nolarizability

of the solvent is ag. Finally, s is the distance between the centres

of gravity of the dipoles.

The contribution from the interaction between the ion and

a dipole is

. L] L] 2 2
_ 1 (Hs B) % 1 ¥sTHg 3 (Js g) le “g
Pid T T RS T TR Ny ; N CEEY
4 R3 2R3 1 R3 AR RS Zz!\uRu

in which R is the distance between the ion and the¢ centre of gravity
of the dipole. The polarizahility of the ion is . Now, in An’
one of the polarizabilities is that of the ion and the other is that
of the solvent, A
It is not difficult to show that for the distances applicable
to the solvated ionic species, the An all are essentially unity,
In the following, we will use the simpler forms in which all An = 1.
The distance R hetween the ton and the dipole is the paramecter

of interest. Therefore, it is necessary to express the distance
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s hetween the molecules of solvent in terms of R.  For the regular
tetrahedron and octahedron, this is a simple process. Furthermore,
it 1s possible to reclate the orientations of the dipoles to the

th - . .
molecule. If we assume an orientation

unit vector ﬁi for the i
which yields the optimum interaction between the ion and the solvent
dipole, then the dipole vectors can be written as

El = Uﬁl

nz = Uﬁz
for a pair of dipoles, and

For any pair of dipoles,

Ui*u, = plcoso

UZRI .RZ ’

and

upes

~ ~

HRy+(P2-Ry) = pR(cos6-1)

- uR{cosH-1).

Mo *s

In calculating the total contribution to the potential enerov
function due to the interactions between all the dipoles in a
tetrahedron, we multiply the basic result for a single pair by o
(i.e., n(n-1)/2 for n identical species). On the other hand, for
the octahedron, we multiply the basic result by 12 (i.e., n(n-1)/2
-3 which climinates the three pairs which are separated by the
centrally located iton).

The specific forms for the dipole-dipole and ion-dipole

energies arc the following. TFor the four-coordinated tetrahedron,

3/2 !i
n3

. E—

“d = 10(3/8)

dd - (3/8)% % /R "

o .

[§¥)
to
—




and

c. The total potential cnergy

The total potential energy function is obtained by adding

a repulsion to the sum of C¢dd and C¢id' Thus, the total potential

function is written as

Cumry = o_ + 3., + o

. (2.
r dd id-

For somec models, the repulsion is combined with a van der Waals
attraction, as is the case for the Lennard-Jones potential. When it
is clear that a van der Waals attraction between the ion and solvent
is implicit in C¢r, then specific account of the interaction is

omitted from eqn (2.23) and (2.26), (and hence in (2.26)), viz.,

2
n.
IU

2c
RE

. Zey ae a. |
(bid = 4 . 2 W 8 . (2.23)
R R R
; For the six-coordinated octahedron, j
i
6p = 3 &2_[3 ] _5_0‘_5_] (2.24)
dd 7 g3 2/7 R®
and
Ze oge’ aiuz
o, = - 67— - 3> — - 12 (2.25)
¢ R? RY RE
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is omitted,
Mechanical equilibrium is specified in terms of Ro, the

equilibrium value of the radius of solvation, by
U'(Ry) = 0. (2.27)

Thus, we can write

e? a.u?
+ 12—
R} RS RJ

S

Cq;' +ZSE+2

1. - "
rep e = 0 (2.28)

in which

vo Nt = - 3 3/2 w2l . 3/2%s ,

(Toqq)" = - 30(3/8) Ei(l 2(3/8) R%] (2.29)

or
2 a
(%6, = - > Lis . > S (2.30)
dd /7 R} /7 R}

and

“op = - —hep[n + niRese)”] (2.31)

0

for the Woodcock generalized exponential repulsion.
Eqn (2.28) yields an equation in the adjustable paramcters.
The complete expression for the force constant yvields another cquation.
Thus, with the assumption of the value of the solvation radius
at equilibrium and the value of the force constant for the far

infrared-active vibrations, it is possible to determine the
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values of the adjustable parameters for a particular ion. This

process is carried out in the next section.

3. Analyses with specific functional forms

The analvses to he considered convientlyv divide into those
which depend upon exponential forms for the repulsion, and those

which depend upon inverse powers.

1. Exponential forms

The simple Born exponential rcpulsion is contained as a
limit in the Woodcock generalized exponential repulsion. Thus,
to hegin, we consider the Woodcock form,

Following the prescription laid down in the last section,

we proceed here to determine the values of the adjustable parameters

From the equilibrium condition, eqn (2.28), we can write the

following

a_e- oL .
Bm + nx) = RIVH[28M 4 28, ot 1(‘wd])'
R3 R3 R{ ‘
=P (53.1)
C
in which we have defined x as
x = (Ro/p)". G.2)

The expression for the force constant can be expressed as

e
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B[m(m-1) - n(n-2m+1)x + n?x?]
2 2
o_e a:U
= 3RM*Z %k v 2.5 4+ 292
RS RS
= QC'

(3.3)

These two equations can be solved for B and x. The elimination of

B yields

(n-2m+1)PC + QC 1
X = + ([n2+2n-4mn-4m+5]Pé + 2(n+1)PCQC

2nPC ZnPC

. ch]l/z

The value of p is
p = Ro/x
Finally, the value of B is found to be

B = PC/(m + nx).

(3.4)

(3.5)

(3.6)

The Born repulsion follows from the Woodcock form with m = 0

and n = 1. Values of B and p for the Born potential are given in

Table 2.

Woodcock‘}a in studving the alkali halides, assumed a valuc
of m4. The value of n ranged from 1 to 6. We assume values of

m=4 and n = 6. The results, values of B and p for the solvated

alkali cations, are given in Tahle 3.
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L. lnverse powers

Up to this point we have used forms for the potential which
depend upon two parameters within the repulsion. It is useful and
instructive to shift attention from these exponential forms in order
to consider another common f{orm of intecraction, the R’lz repulsion.

6

When this form of repulsion is combined with an R attraction as

oy = A/R'Z - B/R® (3.7)
i

,
we have an cxample of the Mie potential.l“ On the other hand, these

two terms can be combined as

oLy = ADIGe/RYTE - (0/R) ] (5.8
which is a Lennard-Jones potc-ntial.]J The quantity o is a distance
for which the potential vanishes. For our purposes, 1t is more

convenient to use (3.8) in the form

oy = e/R)C[(p/R)® - 2] (3.9)

£ = "”o

When cqn  (3.7) or (3.9) is combincd with other terms to give a

potential of the form

CUR) = - =SB B e By e (3.10]
R

M or LJ)

the quantitics A and B or ¢ and p arc parameters which

are to be determined with the use of the experimental data.

e d
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To begin, we examine the use of (3.10) with the Lennard-Jones
component. This form of potential is analogous to the Stockmayer
form of hybrid potential which is used in the analysis of polar

molecules.14

As we illustrate momentarily, the use of this form

of potential with the values of the quantities Ry, ags and u in
Table 1 leads to a mathematical pathology; an intrinsically positive
definite quantity is determined to be negative.

The complete force constant for the potential with a Lennard-

Jones component is

2

(6 S &
k = 4c= (p/Ro)®[11(p/Ro)® - 5] - 2c—>— . (3.11)
R R§
Define the quantity x as
x = (p/Ro)®. (3.12)

Then, with the use of U'{Ry) = 0, we find

ex(x -~ 1) = A

ex(llx - 5) = B

with
2
_ Ley ag€ Ro .cC . 3]
A g + 6R3 + 17c ( ¢dd) (5.11)
and
2
[0 A &1
B = fé RZIK + S, (3.15)
2R3
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The pair of equations (35.!3) are solved casily for x and e:

_ 50 - B i
X % A7A° B (3.10]
Here, the pathology appears. For lithium, or any of the cations

of group I, we tind x < 0. By definition, however, cgqn (3.12), X
must be greater than zero. Hence, the contradiction suggests eilther
(1) the use of the Lennard-Jones component is inappropriate or (2)
the values of Ry, used are inappropriate. We return to consider this
question briefly in the next secticen.

The Mic potential is a decoupled form of Lennard-Jones potential.
The adjustable parameters A and B can be determined ecasily as follows.

The complete force constant 1is

l.et

=
il
e
~
~
—
N

S
b = B/RS (5]

Then, we find the ecquations




to
ra

152 u'502
' Y = 5 Rgk + (3,21
1 2¢ Rg
Thus,
4 = (Y - 5X/3
a = 7Y - 5X/3)
(3.2

b = é(y - 11X/3).

The results of the application of these equations to the alkali
metal cations are given in Table 4. It is remarkable to note that
for both lithium and sodium, the value of B found is negative. Thus,
for both of these ions we f{ind an R-O rerulaion in addition to the

R™L2 repulsion when ¢ = 4,

4. Discussion

lor some time now, the problem of the determination of the i

517 These %

encrgies of solvation has commanded much attention.
efforts amply show that clectrostatic contributions predominate.
Some calculations have been carricd out which incorporate an
accounting for repulsive interactions.!®+17 As onc expects, the
repulsion is only a small contribution to the total cnergy of solvation.
Thus, one would anticipate a lack of enthusiasm for the pursuit of
the most accurate form of the repulsion, if the goal were only to
determine the encrgies of solvation.

As we have shown, certain phenomena, principally the far infra-
red spectra, depend sensitively upon the repulsion. [In this paper

we also have shown that these vibrations depend substantially upon
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van der Waals and induced dipolar attractions which operate between
the ion and the molecules of solvent. The cenergies of solvation arce
thermodynamic quantitics which are characteristic of a state of
cquilibrium. On the other hand, the vibrational spectra of the
solvated ions reflect the importance of terms in the potential energy
function which influence time-dependent phenomena. Thus, although

the repulsion and the induced dipolar and van der Waals interactions
may play smaller roles in the determination of the cnergy of solvation,
their role can become much cnhanced for rate and transport processes.

[t is possible, of course, to gencrate many different forms
for the repulsion in the total potential. In the absence of any
other measurable quantity, therc is little upon which to basc a
choice of onc form over another. Even though the repulsion and
van der Waals attraction contribute but a fraction to the total
energy of solvation, the magnitude of *he contribution for one
form as compared to another can be diagnostic.

In the previous section we considered three model potential
energy functions in which only the repulsion contained adjustable
parameters. In contrast, for the Mic potential, we determined
coefficients for both the repulsion and the van der Waals terms.
Thus, it is necessary to compare only functions which have the
same overall form.

Table 5 lists the values of the repulsions and the Mie potential
evaluated with the equilibrium radius of solvation. The Born and

Woodcock terms all can be compared onc to another.

It is clcar that there is little to distinguish the Born from the

Woodcock 4/6 potentials for the ions lithium, sodium and potassium.
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The Born repulsion decreases monotonically., This is true also for
the Woodcock potential., llowever, for the Woodcock 4/6 potential

we see that changing from 4- to 6-coordination at Rh shows a dramatic
change in the repulsion.  This change is not truce of the Born
potential. As Muirhcad-Gould and Laidlcr17 have shown, therc is

a distinct difference in the trend in the cnergies of solvation

upon changing from 4- to 6-coordination. This trend is matched by
the experimental points. However, it is difficult to say at this
point whether the trend depends significantly upon changes in the
repulsion or not.

The Mic potential deserves special attention. First of all,
the paramecters A and B apply respectively to a formal repulsion and
an attraction which operates between the ion and the molecules of
solvent. In contrast, in the other models of the potential function,
all the adjustable paramecters apply to one part of the complete
function, the repulsion. The use of the Mic potential, therefore,
suggests that the representation is more physically "truthful" than
is the case for the other more restricted models. There is no
compelling reason to expect that the cxperimentally measured (or
morec accurately, cstimatcds) polarizabilities for the ions should
apply to the van der Waals interaction hetween the ion and the
solvent. The results with the usc of the Mie potential scem to
indicate that the experimental polarizabilities of the ions--as
used for example with the exponential forms in section 3, part I--

may indeed not apply.




The values for the contribution of the Mic notential to the
total energy of solvation are listed in Table 5. Thesce values
s represent the combination of the repulsion and the attraction.
It is clear that the total cffect of both terms is a net repulsion
at the equilibrium radius of solvation. The fact that there is a
trend downward from lithium to sodium and back upward from sodium

to caesium is accounted for bv referring to the changing role of
6

the R*~ term as shown in Table 4. The ionic polarizabilities are
given in Table 1. For lithium and sodium, these quantities are
small. Thus, any induced dipolar, van der Waals attraction between

the ion and a molecule of solvent will he extremely small, For

-1

example, for lithium we calculate this contribution to be 77 J mole
It would come as no surprise therefore to find small, but positive,
values of B for lithium and sodium. It is somewhat surprising to
find in fact that the polarizability has vanished (in terms of this
model) and that the van der Waals attraction is replaced by a

138 to determine the

repulsion. Quantum mechanical calculations
nature of the interaction between the lithium cation and the
formaldehyde molecule indicated that the lithium 'cation does not
participate in any covalent delocalization of electrons in either
the 1s or 2s shells. That work® concluded that lithium behaves
essentially as a hard, charged sphere., In light of this finding,
the role reversal of the R_6 term looses 1ts surprisal value,
Lithium, and to a much lesser degree sodium, is simply a very

classical, charged particle.

It is of interest to see if therc is any observable relation-
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ship between the values for the B-factors which are determined by
matching the potential to the cxperimental quantitics and the valucs
of the polarizabilities (listed in Table 1). We have seen above
that for lithium and sodium there can be no correspondence. The
fact that a negative value of B is found both for lithium and
sodium cannot support any interpretation which involves the
polarizability of the ion (viz., a van der Waals type of inter-

action). For the ions of potassium, rubidium, and caesium we find

positive values for the B-quantities, as given in Table 1.

At first glance, it does appear that there is some correspondence
between the B-values and the experimental values of the polariza-
bilities. We can assume that B is related to the polarizability

1
of the ion and the dipole mcment of the solvent by
B = faiuz. (4.1)

The quantity f is a constant of proportionality. Tabhle 6 lists
the values of fui with f = 1, All the values listed are very
large, much larger than the experimental polarizabilities. If we
assume that these values are large because f should not be unity, then
a constant value of f should emerge when we examine the ratio
ai(calc)/ai(exp)' These ratios are alsoe included in Table 6. As is
readily secen, there is no consistancy. Lastly, we list the values
of “i(n)/ai(n-l) for both the calculated and the cxperimental
quantities. There is no similarity herc cither.

We conclude that for the Mie potential at least, there is the
indication that the trends in the polarizabhilities of the ions

are roughly followed. However, becausc the effective polarizabilitics

———— _‘_4\ - |
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are much larger than the experimental quantities, therc appear to
be operating additional quantal cffects [which would involve
electronic overlap] which are not adequatelv accounted for in terms

of the simplicity of the potential cnergy functions used.

The results obtaincd for the Mie potential suggest that the
pathology observed with the usc of the lLennard-Jones component is
intrinsically associated with the form and not with the values of
the parameters used. The Lennard-Jones potential, when used by
itself, adequately reprecsents the balance between attraction and
repulsion with two parameters, an energy and a distance. When used
in conjunction with a strong interaction such as an electrostatic
lonic-dipolar interaction, it may not be possible for the parametocrs
rationally to adjust in a physically reasonable sense. Thus, we
suspect that it is more appropriate to use forms for the potential
which consist of independently variable repulsions and attractions.

We cannot claim to have unearthed the accurate form of the
potential energy function which operates to describe ionic solvation.
lHowever, we claim to have accented some factors which have
received less attention than they warrant, namelv, the roles plaved
by the repulsion and dispersion forces. The question must thercfore
be, what is the accurate form of the potential. A considerable
body of work in related areas!9,20 suggests that accurate potential
energy functions can be constructed in terms of individual atomic
and electronic (bonding and lone pair) contributions from all the
atoms in the molecular aggregate. Scheraga's eﬂ"orts,]9 in particular,
have been notably successful in a programme to parametcrizc a
large number of interactions. A feature of Scheraga's work which

seems also to be applicable to the solvated ion is the use of a

---n-----llIIllllhln.ll...ﬂl..i..l"
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three-parameter potential for each "electron". The electrons in
Scheraga's model arc negative point charges which are not
necessarily located at the same positions as the actual quantal
electronic charge distributions. The potential Schoraga’g uses lor
the intecraction between electrons is the Buckingham exp-6 form.
Dispersive interactions are associated only with the clectrons,
The parameters are then fixed by means of least squarcs fits to all
avaliable experimental data and to some quantum mechanical calcula-
tions in regions where strong repulsions operate,

Unless one is content to use the R_12 or similar form of
repulsion in the potential enecrgy, then the use of an cxponential i
form for the repulsion requires two adjustable parameters,

As we have secen with the Mie potential, it is useful to be able
to determine the coefficient of the van der Waals term by fitting
to experimental data as well. Thus, to be able to fit both the
repulsions and the dispersive forces requires a minimum of three
adjustable parameters.

The use of the exponential form for the repulsion has a long
tradition. And, its usc scems to be morce closcly related to actual
quantum mecchanically calculated repulsions than is the case for the

- Y - -
R 12 repulsion.” Thus, we suspect that the accurate form of the

tv

potential cnergy function for a solvated ionic system which will
cmerge will be onc which faithfully reproduces the vibrational
spectra of the ion in the cage of solvent, and the cage itself.
Morcover, the function ought to be able to predict vibrational
contributions to the activation of rate and transport processcs.

It seems at this timc that a hybrid form which uses the cxponential

repulsion together with the van der Waals attraction for part of
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the potential will be successful .
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Table 1: Experimental data for use in determining potential energy

functions

Solvent: dimethyl sulphoxide: n = 1.4783 (Na D-1line), u = 4.3 debye

o = 8;3 (a)
Ton Ro (A) v(cm 1y (b) k(dyn em 1 ()4 an) ()
4-coord 6-coord
Lit 3.24 429+2 74307 74894 0.08
Na® 3.56 198+3 49497 50652 0.20
K* 3.79 15343 47837 49672 0.87
Rb* 3.91 12343 60121 64785 1.43
cs” 4.12 110+4 66506 73888 2.50

(a) Refractive index and dipole moment: Merck Index (Merck Publishing
Co., Raway N.J., 1976); polarizability from refractive index
and eqn (2.6).

(b) From Maxey and Popov, see ref., 2

(c) Calculated from Maxey and Popov's data2 for 4- and 6-coordination,

see ref. 1.

(d) From Smyth, ref. 6.




Table 2: Model potential with Born exponential repulsion

Ton Bx101%erg ox108¢m

4-coord 6-coord 4-coord 6-coord
Lit 0.51 0.59 0.26 0.32
Na® 0.38 0.43 0.27 0.34
K 0.27 0.30 0.24 0.30
Rb* 0.18 0.20 0.18 0.22
cs® 0.12 0.13 0.15 0.17

Table 3: Modcl potential with Woodcock 4/6 exponential repulsion

44

[on Bx10" "erg-cm* pX]08Cm

4-coord 6-coord 4-coord 6-coord




Table 4: Model potential with Mie components

Ion Ax10%%%erg cm?!? Bx10°%erg ¢m®
4-coord 6-coord 4-coord 6-coord

Ll 0.68 0.49 -0.75 -0.56

Na 0.69 1.23 -0.01 0.56

K 4.43 3.20 9.57 6.99

Rb* 9.71 7.22 31.88 24.22

cs’ 23.96 18.20 71.23 55.25

energy )
Table 5: Differences in ¢rep as a contribution to the free/of cationic

solvation
kJ mole !
Ion Born Woodcock
Li* 30.71 32.55
Na® 22.89 23.68
K" 16.28 17.91
Rb”* 12.06 36.61
+

Cs 7.82 25.61

e e o D S i




Table ¢: Effective polarizabilities from B = asu

23 (a)
Ion 0‘i(calc)(A ) OLi(n)/mi(n—l) 0Lc:-,ilc/mexp
4 o

K 52 60

N 2.52(1.64)
Rb 131 92

. 2.28(1.75)
Cs 299 120

(a) Parenthetic values are listed for the experimental quantities.

H : £ 1. 3 A EIPoN - . . s .
ere, n ratare o +tha idantity of to ion in the sense of increasing

atomic number.







